Monday, January 19, 2009

Toolkit Parts for Multicellularity
The article about the evolutionary history of body size on Earth has raised some interest. Words like "latent evolutionary potential was realized", "realize preexisting evolutionary potential" and" a major innovation in organismal complexity—first the eukaryotic cell and later eukaryotic multicellularity" seem to have raised a few eye brows. Are "latent", "pre-existing","innovation" and "potential" the appropriate words? From the following figure, the earliest multicellular (Grypania spiralis) eukaryotic fossil dates back ±1.6 billion years ago (bya) and at present the earliest evidence for eukaryotic cells is posited to have existed 1.68-1.78 bya , (perhaps 1.8 bya or possibly even 2.1 bya) (Figure 1).

The following tree is adapted from with the tentative dates for the origins of archaea and bacteria, eukaryotes, as well as the origins of multicellularity and body plans (Figure 2).*
Figure 2: Tree of life (Adapted from*

As suggested by the paper, increases in cellular sizes roughly coincide with the alleviation of at least one environmental constraint, namely low atmospheric oxygen pressure. The origin of body plans (±0.6 bya) also seem to coincide with an increase in atmospheric pressure. Why could that be?

A look at hedgehogs
With about 6, 000 spines on their back, an excellent sense of smell, a running speed of 4.5 mph a normal heart rate of up to 19o bps and 10 bps during hibernation, hedgehogs are interesting little animals. Hedgehog (hh) genes are equally fascinating. The reason for the name of this gene is that a malfunctioning hh gene often results in the formation of small pointy projections on embryos, similar to that of a hedgehog. So what does it do?

The hh signaling pathway plays a fundamental role in cell pattrerning, cell proliferation and participates in the development of tissues and organs during the stages of animal development. It exerts its effect by influencing the transcription of many target genes in a concentration dependent manner.

Mechanism of action and signal transduction: Hints from hedgelings and hoglets
The hh protein comprises of two domains, namely the hedge domain (hedgling) and the hog domain (hoglet). The hedge domain acts as a ligand after processing and binds to a set of conserved receptors to activate downstream signal transduction pathways [1]. After transcription, the hh-gene undergoes a post-translational autocatalyzing editing process initiated by the hoglet resulting in the formation of the hedgling protein. Further processing of the hedgling occur and include the palmitoylation and sterolation (addition of cholesterol) of the ligand (Figure 3). Interestingly, hh proteins are the only examples of sterolation in contempory biology (more on that later) [2]. After processing, the hedgling ligand is transported through the Dispatched receptor where it binds to a specific lipd transport molecule (different in invertebrates and vertabrates) and is transported and binds to the 12-transmembrane protein called Patched. Internalisation od Patched alleviates the inhibitory effect of Patched on the 7-transmembrane protein Smoothened. This in turn activates the hedghog-related transcription factors (Gli in vertebrates and Ci in invertabrates) (Figure 3) [2]. This relatively simple pathway plays a crucial role in the unfolding of the developmental program in vertebrates and invertabrates.

Figure 3: Hedgehog signal transduction. The hedgehog protein is post-translationally modified through autocatalyzation and palmitate and cholesterol addition. Processed hedgelings are transported to the extracellular matrix through dispatched receptors and in turn transported by lipid transport molecules to bind to patched receptors. Binding of hedgling molecules to Patched receptor results in the subsequent activation of hedgehog mediated transcrition factors e.g. Gli in vertebrates and Ci in invertebrates.

With the knowledge of some of the proteins that play a part in hh-signal control, let's look at the evolution and origin of some of the components. The following proteins can be used for BLAST.
Hedgling (Amphimedon Queenslanica)
Hoglet (Monosiga Ovata)
Patched (Ciona Intestinalis)
Dispatched (Ciona Intestinalis)
Suppresor of Fused (Sufu) (Ciona Intestinalis)
Smoothened (Ciona Intestinalis)
Fused (Drosophila)
Gli1 (Human) or Ci (Drosophila)
Kif27 (vertebrate) or Cos2 (Drosophila)

Using the InterProScan Tool with these sequences, the following results were obtained:
Hedgling: The oldest (phylogenetically) bona fide hedgeling found so far is in the genome of the sponge, Amphimedon Queenslanica. However, the structure of this domain is structurally homologous to the zinc-binding motif in bacterial D-alanyl-D-alanine carboxypeptidases (the same motif found in beta-lactamases and the various nylonase genes).
Hoglets: Hoglets are typical Intein (internal protein) proteins also known as HINTs (hedgehog inteins) [3]. Inteins are selfish DNA elements that are distributed accross all the domains of life [4].
Patched: Patched is a transmembrane protein with a sterol sensing domain (SSD) and is also distributed in all the domains of life.
Dispatched: Dispathed is also a transmembrane protein with a SSD and forms a subfamily of the sterol sensing receptors. Also present in all the domains of life.
Fused: Fused is kinase conserved in all the domains of life.
Suppresor of Fused (Sufu): Sufu yielded an interesting result. Acting as a suppressor of the hh-signaling pathway, it is limited to the bilaterians and cnidaria and bacteria. it seems to have been lost in other linages.
Smoothened (Frizzled domain, G-protein-coupled receptor (GPCR) domain): Smoothened contains a frizzled domain and a GPCR domain. The frizzled domain is limited to eukaryotes, while the GPCR domain is conserved in all the domains of life.
Gli1: This protein (and cos2) is transcription factor and hh-signaling converges to control the activity of this protein. It is a zinc-finger protein. While zinc-finger proteins are conserved in all domains of life, this particular protein seems to be limited to eukaryotes.
Kif27: Kif27 (and Cos2) is a kinesin-related protein (KRP). Kif27 appears to be functional molecular motor while Cos2 seems to have lost the ability to function as a motor protein. KRPs are conserved accross all eukaryotic forms of life [5]. A conserved function of KRPs is to facilitate movement of vesicle along microtubules and one of the functions of Cos2 seems to be just that [6].

From the above, the following picture of the components of the hh-signaling toolkit can be drawn.

Figure 4: Origins of the parts in the hedgehog signaling pathway. (Red = absent, Orange = reasonable sequence and/or structural simlarity, Green = present, Graded green = part of the same family, Brown = unsure .

Note that many of the components of the signaling pathway are present in various bacterial and archaeal lineages. Also note that the origin of multicellul body plans roughly coincides with an increase in atmospheric oxygen pressure as well as the first bona fide hedgling. Remember, hedglings are the only examples of post-translational sterolation (addition of cholesterol) of proteins in contempory biology. Why is this interesting? Well, oxygen is needed for cholesterol synthesis, more importantly, oxygen is needed for placing the hydroxyl group in the 3-position of cholesterol which plays a crucial role in subsequent transformations (including sterolation). Thus, while large parts of the hh-signaling pathway was present, a little extra oxygen was needed to unlock multicellular signaling capabilities of hedglings.

Therefore, words like "pre-existing", "latent" and "potential" seem apt in describing the hedghog signaling pathway and the unfolding of multicellular body plans in relation to atmospheric oxygen pressure. "Innovation" perhaps not so much, seeing that only real innovation was bought on about by life itself namely the increase in atmospheric oxygen. This increase in atmospheric oxygen in turn seemed to have unlocked the pathways to multicellularity (more than 3 cell types).

Gene loss vs Innovation
Looking at the hh-signaling pathway, there seem to be very little innovation, and a lot of co-option of pre-existing information into new functions. Sufu was an interesting example of gene loss only to be co-opted later into a role in the hh-signaling pathway. With this in mind, what can one expect to find in the Last Universal Common Ancestor (LUCA)? Also consider the following. The Tetrahymena thermophila (alveolate) genome has been sequenced, and a number of genes that are absent in yeast (fungi), are found in amoeba, vertebrates, invertebrates as well as in the Tetrahymena genome. It paints the following picture (Figure 5) [7].

Figure 5: Genes present in Tetrahymena thermophila but absent in yeast indicate either convergnece in higher organisms or that the genes were present in the eukaryote common ancestor.

1. Matus DQ, Magie CR, Pang K, Martindale MQ, Thomsen GH. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution.
Dev Biol 2008; 313: 501-518.
2. Bijlsma MF, Spek CA, Peppelenbosch MP. Hedgehog: an unusual signal transducer. Bioessays 2004; 26: 387-394.
3. Perler FB. Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution.
Cell 1998; 92: 1-4.
4. Pietrokovski S. Intein spread and extinction in evolution.
Trends Genet 2001; 17 465-472.
5. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms.
Genes Dev 2008; 22: 2454-2472.
6. Ogden SK, Ascano M Jr, Stegman MA, Robbins DJ. Regulation of Hedgehog signaling: a complex story.
Biochem Pharmacol 2004; 67: 805-814.
7. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR. et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 2006; 4: e286.

J. L. Payne, A. G. Boyer, J. H. Brown, S. Finnegan, M. Kowalewski, R. A. Krause, S. K. Lyons, C. R. McClain, D. W. McShea, P. M. Novack-Gottshall, F. A. Smith, J. A. Stempien, S. C. Wang (2009). Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity Proceedings of the National Academy of Sciences, 106 (1), 24-27 DOI: 10.1073/pnas.0806314106

*-corrections are welcomed.

Update 2009-08-17.
Following has been changed:
KRPs however are conserved accross all domains of life [5].
This should read:
KRPs are conserved accross all eukaryotic forms of life [5].

It is unlikely that KRPs are found in bacteria and archaea. The taxonomic figure here related to KRPs is a bit misleading as it might refer to just the ATP-binding site of KRPs and that might well be conserved accross all domains of life.

Thanks Steve

Tuesday, November 25, 2008

Trichoplax adhaerens and the development of eyes

On the development of eyes

Several types of eyes exist and these include the camera-type eye, the compound eye, and the mirror eye (Figure 1). Ernst Mayr proposed that eyes evolved in all animal phyla 40 to 60 times independently.
A monophyletic program governing the development of the different eye types is proposed and the Pax6 gene is posited to be the master control gene. The Pax6 gene also plays a part in controlling the development of the nose, ears and parts of the brain.

What is needed for the developmental program of eyes?

A few core genes include:
Pax6 (eyeless [eye]) in Drosophila)
Six-type genes (E.g. Six3)
Sox-type genes (E.g. Sox2)
atonal ( E.g. Atoh7)
Retinoid receptors
Fox transcription factors (E.g. FoxN4)

Fascinating experiments have been conducted by shuffling around the genetic program architecture of genes associated with eye development in various animals.
For example in Drosophila:
Ectopic eye structures are able to be induced on the antennae, legs, and wings of fruit flies. This is done by targeted expression of the eyeless gene (Pax6 Drosophila homologue) (Figure 2). The Pax6 gene from the mouse is able to do the same job as the Drosophila version (Figure 3). And in Xenopus embryos, ectopic eye structures in can also be induced by the Drosophila eyeless (Pax6) version (Figure 4).

What about the Trichoplax adhaerens genome? Any genes for eye development?
It seems quite a chunk of the circuitry needed for eye development is present. (From table 1)
PaxB (eyeless?)
Six genes
Sox gene
Atonal gene
Retinoid X Receptor
Fox transcription factors

All that is missing seems to be crystalins (plays a part in lens formation). However, Darwin posited that "The simplest organ which can be called an eye consists of an optic nerve, surrounded by pigment-cells and covered by translucent skin, but without any lens or other refractive body." Thus large chunks of the circuitry for eye development in Trichoplax is present but no eyes!

Now compare the developmental program to evolution.

Here is an interesting article that shows the parallels between evolution and development.

For development:
Primordial germ cells (PGC) are prevented from entering the somatic program and are demethylated (genome-wide erasure of existing epigenetic modifications). Then the gametes are imprinted (targeted DNA methylation) during gametogenesis, only to be demethylated again after fertilization. Then during development, DNA is methylated again, causing totipotential cells to become pluripotent. X-inactivation and reactivation (of the paternal gamete I think) also occurs. The whole process is governed by the genetic (and epigenetic?) program. During the unfolding of this somatic program, random variation and selection occur, ultimately leading to just a few endpoints, every time it is successful. The process is constrained (few end points) as a result of pre-existing information that is set up during the inititiation of the process. All this is controlled by information in the genome.

For evolution:
There also seems to be only a few endpoints (small subset, limited variation) out of all the possible endpoints.
In the article:
An End to Endless Forms: Epistasis, Phenotype Distribution Bias, and Nonuniform Evolution
It is argued to be as a result of genetic instructions dating earlier in evolutionary time. Preadaptations...

As already seen in the evolution of eyes, as soon as these sets of genes were formed (E.g. Pax genes), through whatever mechanism), evolution seemed to have been biased to a few end points, and these few endpoints arose 40-60 times, independently, as a result of pre-existing (preadaptations) information in the case of eyes.

What other "biased" end points can there be? Nervous systems, smell, hearing? And why would evolution be biased, as in development, to only reach a few end points over and over?

Development, intrinsic control, biased evolution and facilitated evolution

ScienceDaily (Oct. 25, 2008) — Researchers have put forward a simple model of development and gene regulation that is capable of explaining patterns observed in the distribution of morphologies and body plans (or, more generally, phenotypes).
The study, by Elhanan Borenstein of the Santa Fe Institute and Stanford University and David Krakauer of the Santa Fe Institute was published in this month's issue of PLoS Computational Biology.

Nature truly displays a bewildering variety of shapes and forms. [b]Yet, with all its magnificence, this diversity still represents only a tiny fraction of the endless 'space' of possibilities, and observed phenotypes actually occupy only small, dense patches in the abstract phenotypic space.[/B] Borenstein and Krakauer demonstrate that the sparseness of variety in nature can be attributed to the interactions between multiple genes and genetic controls involved in the development of organisms – a much simpler explanation than previously suggested.

Borenstein and Krakauer further integrated their model with phylogenetic dynamics, allowing developmental plans to evolve over time. They showed that this hybrid developmental-phylogenetic model reproduces patterns that are observed in the fossil record, including increasing variation between taxonomic groups, accompanied by decreasing variation within groups. This pattern is consistent with the Cambrian radiation associated with a rapid proliferation of highly disparate, multicellular animals, and suggests that much of the variation seen today is as a result of simpler genetic controls dating from much earlier in evolutionary time.
These simpler genetic controls include hox genes that are responsible for body plans, nervous systems, eyes etc. As seen, many of these switches were present in animals at the base of the evolutionary tree without any of these body plans, nervous system or eyes etc.

The article continues...
The findings presented in this study also bear directly on issues of convergence (when very different organisms independently evolve similar features). By including a model of development, rather different genotypes can produce very similar phenotypes. Consequently, convergent evolution, which the vast space of genotypes would suggest to be rare, is allowed to become much more common.

One of the paradoxical implications of this study has been to show how innovations in development that lead to an overall increase in the number of accessible phenotypes, can lead to a reduction in selective variance. In other words, while the potential for novel phenotypes increases, the fraction of space these phenotypes occupies tends to contract.

They concluded that "The theory presented in our paper complements the view of development as a key component in the production of endless forms and highlights the crucial role of development in constraining (as well as generating) biotic diversity."
And there we have it... biasing (constraining) of evolutionary trends as a result of genetic information present in simpler genetic controls dating from the base of the evolutionary tree (preadaptations).

The free, online peer-reviewed article:

These findings complement the view of development as a key component in the production of endless forms and highlight the crucial role of development in constraining biotic diversity and evolutionary trajectories.
The role of development in generating, or constraining, biotic diversity has been one of the most active debates in evolutionary biology [32]–[34]. The roots of this debate go back to the study of homologies and questions over physico-chemical verses genetically-selected rules of growth. One merit of simple developmental models is to illustrate how these two positions reflect necessary, complementary properties of generic developmental programs. Regulatory epistasis introduces non-linearities into development, allowing similar genotypes to generate significant divergence among phenotypes, whereas degeneracy tends to contract the occupancy of morphospace and bias phenotypic samples. Of great interest is how these structural properties of development have themselves been modified over the course of evolutionary time, potentially changing the tempo and mode of the evolutionary process. One of the paradoxical implications of this study has been to show how innovations in development (arising through increasing regulatory dimensions) that lead to an increase in the volume of accessible phenotypes, can lead to a reduction in selective variance (through increasing regulatory epistasis), so whereas the potential for novel phenotypes increases, the fraction of space these phenotypes occupies tends to contract. Hence the evolutionary process moves from a macro-configuration, sampling distant regions of space sparsely, to a micro configuration, sampling local regions of space at high resolution. This is analogous to an annealing process, whereby as an optimization process proceeds, the solutions become more frequent and more densely localized around the putative solution points.
This is analogous to evolution being a memetic algorithm (nice paper discussing it) with a set fitness function in a pre-existing fitness landscape. Convergence is to be expected.

Take the following into consideration:
  • Evolution is constrained (biased) as a result of genetic information present in simpler genetic controls dating from the base of the evolutionary tree (preadaptations)..
  • We observe many preadaptations for multicellularity in primitive unicellular organisms.
  • Also several toolkits (also preadaptations) for the development of body plans (Hox genes), the nervous system and sensory organs in animals at the base of the eumetazoan tree.
  • Also, spectacular examples of convergence are observed in nature.

How do stem cells become specialized?
Many Paths, Few Destinations: How Stem Cells Decide What They'll Become
How does a stem cell decide what specialized identity to adopt -- or simply to remain a stem cell? A new study suggests that the conventional view, which assumes that cells are "instructed" to progress along prescribed signaling pathways, is too simplistic. Instead, it supports the idea that cells differentiate through the collective behavior of multiple genes in a network that ultimately leads to just a few endpoints -- just as a marble on a hilltop can travel a nearly infinite number of downward paths, only to arrive in the same valley.

Evolution seems to be biased towards a few endpoints. This is partly due to the massive amounts of preadaptations in organisms at the base of the evolutionary tree. Now evolution seems to learn....

Facilitated Variation: How Evolution Learns from Past Environments To Generalize to New Environments
One of the striking features of evolution is the appearance of novel structures in organisms. Recently, Kirschner and Gerhart have integrated discoveries in evolution, genetics, and developmental biology to form a theory of facilitated variation (FV). The key observation is that organisms are designed such that random genetic changes are channeled in phenotypic directions that are potentially useful. An open question is how FV spontaneously emerges during evolution. Here, we address this by means of computer simulations of two well-studied model systems, logic circuits and RNA secondary structure. We find that evolution of FV is enhanced in environments that change from time to time in a systematic way: the varying environments are made of the same set of subgoals but in different combinations. We find that organisms that evolve under such varying goals not only remember their history but also generalize to future environments, exhibiting high adaptability to novel goals. Rapid adaptation is seen to goals composed of the same subgoals in novel combinations, and to goals where one of the subgoals was never seen in the history of the organism. The mechanisms for such enhanced generation of novelty (generalization) are analyzed, as is the way that organisms store information in their genomes about their past environments. Elements of facilitated variation theory, such as weak regulatory linkage, modularity, and reduced pleiotropy of mutations, evolve spontaneously under these conditions. Thus, environments that change in a systematic, modular fashion seem to promote facilitated variation and allow evolution to generalize to novel conditions.
Biased evolution towards a few endpoints under intrinsic control.

And now proteins that control evolution...

Evolution's new wrinkle: Proteins with cruise control provide new perspective

Related articles: Number 1
Mutagenic Evidence for the Optimal Control of Evolutionary Dynamics

Elucidating the fitness measures optimized during the evolution of complex biological systems is a major challenge in evolutionary theory. We present experimental evidence and an analytical framework demonstrating how [biochemical networks exploit optimal control strategies in their evolutionary dynamics. Optimal control theory explains a striking pattern of extremization in the redox potentials of electron transport proteins, assuming only that their fitness measure is a control objective functional with bounded controls.

Evolution is guided by the optimization of fitness measures that balance functionally beneficial properties.

Fitness functions actually guiding evolution?

Number 2:
Optimal control of evolutionary dynamics

From the conclusion:

The observation that coevolving biopolymer sequences may optimally control each other’s evolution raises the prospect of artificial optimal control of evolutionary dynamics. Possible applications include the control of replication fidelity in nucleic acid amplification reactions and the design of therapeutics that dynamically regulate the evolution of viral populations.

And again from this article:

The authors sought to identify the underlying cause for this self-correcting behavior in the observed protein chains. Standard evolutionary theory offered no clues. Applying the concepts of control theory, a body of knowledge that deals with the behavior of dynamical systems..., .

the researchers concluded that this self-correcting behavior could only be possible if, during the early stages of evolution, the proteins had developed a self-regulating mechanism, analogous to a car's cruise control or a home's thermostat, allowing them to fine-tune and control their subsequent evolution.

Self-regulating systems biasing future evolutionary trajectories towards a few outcomes.

Trichoplax adhaerens: The Otp gene

The various versions:
Trichoplax: Function unknown at present. Interested in its function in a basal eumetazoan.
Human otp. Its function:
The role of Otx and Otp genes in brain development.
Over the last ten years, many genes involved in the induction, specification and regionalization of the brain have been identified and characterized at the functional level through a series of animal models. Among these genes, both Otx1 and Otx2, two murine homologues of the Drosophila orthodenticle (otd) gene which encode transcription factors, play a pivotal role in the morphogenesis of the rostral brain. Classical knock-out studies have revealed that Otx2 is fundamental for the early specification and subsequent maintenance of the anterior neural plate, whereas Otx1 is mainly necessary for both normal corticogenesis and sense organ development. A minimal threshold of both gene products is required for correct patterning of the fore-midbrain and positioning of the isthmic organizer. A third gene, Orthopedia (Otp) is a key element of the genetic pathway controlling development of the neuroendocrine hypothalamus. This review deals with a comprehensive analysis of the Otx1, Otx2 and Otp functions, and with the possible evolutionary implications suggested by the models in which the Otx genes are reciprocally replaced or substituted by the Drosophila homologue, otd.
The same for mice:
The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus.
Hypothalamic nuclei, including the anterior periventricular (aPV), paraventricular (PVN), and supraoptic (SON) nuclei strongly express the homeobox gene Orthopedia (Otp) during embryogenesis. Targeted inactivation of Otp in the mouse results in the loss of these nuclei in the homozygous null neonates. The Otp null hypothalamus fails to secrete neuropeptides somatostatin, arginine vasopressin, oxytocin, corticotropin-releasing hormone, and thyrotropin-releasing hormone in an appropriate spatial and temporal fashion, and leads to the death of Otp null pups shortly after birth. Failure to produce these neuropeptide hormones is evident prior to E15.5, indicating a failure in terminal differentiation of the aPV/PVN/SON neurons. Absence of elevated apoptotic activity, but reduced cell proliferation together with the ectopic activation of Six3 expression in the presumptive PVN, indicates a critical role for Otp in terminal differentiation and maturation of these neuroendocrine cell lineages. Otp employs distinct regulatory mechanisms to modulate the expression of specific molecular markers in the developing hypothalamus. At early embryonic stages, expression of Sim2 is immediately downregulated as a result of the absence of Otp, indicating a potential role for Otp as an upstream regulator of Sim2. In contrast, the regulation of Brn4 which is also expressed in the SON and PVN is independent of Otp function. Hence no strong evidence links Otp and Brn4 in the same regulatory pathway. The involvement of Otp and Sim1 in specifying specific hypothalamic neurosecretory cell lineages is shown to operate via distinct signaling pathways that partially overlap with Brn2.
The Zebrafish version. Its function: More of the same.
Differential regulation of the zebrafish orthopedia1 gene during fate determination of diencephalic neurons
The homeodomain transcription factor Orthopedia (Otp) is essential in restricting the fate of multiple classes of secreting neurons in the neuroendocrine hypothalamus of vertebrates. However, there is little information on the intercellular factors that regulate Otp expression during development
In the sea urchin.
Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma.
The Orthopedia gene (Otp) encodes a homeodomain transcription factor crucial in patterning the larval skeleton of indirect-developing sea urchins.
A clear example of a cooption, whereby the same gene plays a role in neurological development in vertebrates and skeletal development in the sea urchin. Recycling of pre-existing genes for various, distinct, developmental processes.

Trichoplax adhaerens: The Pitx gene

Pitx: Another neurologically associated Hox gene present in the Trichplax genome.

The various versions:
Trichoplax. Function unknown at present. Would be interesting to find out what it is.
Human Pitx1 Its function:
This gene encodes a member of the RIEG/PITX homeobox family, which is in the bicoid class of homeodomain proteins. Members of this family are involved in organ development and left-right asymmetry. This protein acts as a transcriptional regulator involved in basal and hormone-regulated activity of prolactin.
Human Pitx2 Its function:
This gene encodes a member of the RIEG/PITX homeobox family, which is in the bicoid class of homeodomain proteins. The encoded protein acts as a transcription factor and regulates procollagen lysyl hydroxylase gene expression. This protein plays a role in the terminal differentiation of somatotroph and lactotroph cell phenotypes, is involved in the development of the eye, tooth and abdominal organs, and acts as a transcriptional regulator involved in basal and hormone-regulated activity of prolactin. Mutations in this gene are associated with Axenfeld-Rieger syndrome, iridogoniodysgenesis syndrome, and sporadic cases of Peters anomaly. A similar protein in other vertebrates is involved in the determination of left-right asymmetry during development. Alternatively spliced transcript variants encoding distinct isoforms have been described
Human Pitx3 Its function:
This gene encodes a member of the RIEG/PITX homeobox family, which is in the bicoid class of homeodomain proteins. Members of this family act as transcription factors. This protein is involved in lens formation during eye development. Mutations of this gene have been associated with anterior segment mesenchymal dysgenesis and congenital cataracts.
Zebrafish Pitx1
Zebrafish Pitx2
Zebrafish Pitx3
Drosophila Ptx1 (fruitfly)

More interesting facts about Pitx:
The Pitx homeobox gene in Bombyx mori: Regulation of DH-PBAN europeptide hormone gene expression
The diapause hormone-pheromone biosynthesis activating neuropeptide gene, DH-PBAN, is expressed exclusively in seven pairs of DH-PBAN-producing neurosecretory cells (DHPCs) on the terminally differentiated processes of the subesophageal ganglion (SG). To help reveal the regulatory mechanisms of cell-specific DH-PBAN expression, we identified a cis-regulatory element that regulates expression in DHPCs using the recombinant AcNPV-mediated gene transfer system and a gel-mobility shift assay. Bombyx mori Pitx (BmPitx), a bicoid-like homeobox transcription factor, binds this element and activates DH-PBAN expression. The BmPitx was expressed in various tissues, including DHPCs in the SG. Suppression of DH-PBAN expression by silencing of the BmPitx successfully induced non-diapaused eggs from a diapause egg producer. To the best of our knowledge, this report is the first to identify a neuropeptide-encoding gene as a target of the Pitx transcriptional regulator in invertebrates. Thus, it is tempting to speculate that functional conservation of Pitx family members on neuropeptide gene expression occurs through a "combinational code mechanism" in both vertebrate and invertebrate in neuroendocrine systems.

PITX genes are required for cell survival and Lhx3 activation

Zebrafish pitx3 is necessary for normal lens and retinal development.

And the trend of neurologically associated genes present in this basal eumetazoan continues

Trichoplax adhaerens: Hex and Dbx genes

More preadaptations from Trichoplax:
Its function?
Critical element in the development of the liver:
The role of Hex in hemangioblast and hematopoietic development.
The homeoprotein Hex is required for hemangioblast differentiation.
The homeobox gene HEX regulates proliferation and differentiation of hemangioblasts and endothelial cells during ES cell differentiation.

Detoxification of free radicals and damaging molecules play a crucial part in cellular homeostasis as well as systems homeostasis. The liver is mainly responsible for system homeostasis as it contains the highest concentration cells (hepatocytes do the heavy lifting) capable of detoxification, modification and excretion of hazardous molecules. It would be interesting to see what a gene that is associated with the development of the liver is doing in this simple organism at the base of the eumetazoan tree.

The trend of neurologically associated homeobox genes continues.
Regulation and function of Dbx genes in the zebrafish spinal cord.
Dbx homeodomain proteins are important for spinal cord dorsal/ventral patterning and the production of multiple spinal cord cell types. We have examined the regulation and function of Dbx genes in the zebrafish. We report that Hedgehog signaling is not required for the induction or maintenance of these genes; in the absence of Hedgehog signaling, dbx1a/1b/2 are expanded ventrally with concomitant increases in postmitotic neurons that differentiate from this domain. Also, we find that retinoic acid signaling is not required for the induction of Dbx expression. Furthermore, we are the first to report that knockdown of Dbx1 function causes a dorsal expansion of nkx6.2, which is thought to be the cross-repressive partner of Dbx1 in mouse. Our data confirm that the dbx1a/1b/2 domain in zebrafish spinal cord development behaves similarly to amniotes, while extending knowledge of Dbx1 function in spinal cord patterning. 2007 Wiley-Liss, Inc

Trichoplax adhaerens: The Hmx gene

Another Hox gene in the Trichoplax genome involved in central nervous system development.

Its function:
Hmx homeobox gene function in inner ear and nervous system cell-type specification and development.
The Hmx homeobox gene family is comprised of three members in mammals, Hmx1, Hmx2, and Hmx3, which are conserved across the animal kingdom and are part of the larger NKL clustered family of homeobox genes. Expression domains of Hmx genes in distantly related species such as Drosophila and mouse suggest an ancestral function in rostral central nervous system development. During vertebrate evolution, the Hmx genes appear to have been recruited into additional roles in inner ear morphogenesis and specification of vestibular inner ear sensory and supporting cell types. Being derived from a common ancestor, the vertebrate Hmx gene family is thus a strong candidate to investigate functional overlap versus the unique roles played by multiple genes belonging to the same family. The functions of Hmx2 and Hmx3 were investigated via directed gene mutagenesis and the primary regions where Hmx2 and Hmx3 exert their individual functions are consistent with their expression domains, such as the vestibule and uterus. Meanwhile, it is notable that some tissues where both Hmx2 and Hmx3 are extensively expressed were not severely affected in either of the Hmx2 or Hmx3 single mutant mice, suggesting a possible functional overlap existing between these two genes. Compound Hmx2 and Hmx3 double mutant mice showed more severe defects in the inner ear than those displayed by either single knockout. Furthermore, novel abnormalities in the hypothalamic-neuroendocrine system, which were never observed in either of the single mutant mice, confirmed a hypothesis that Hmx2 and Hmx3 also function redundantly to control embryonic development of the central nervous system.
The Trichoplax Hmx sequence. BLAST it.

Where is this critter's brain? Did its mind get lost somewhere along the line, or is it just ready for a bit of cooption here and there?